Triple solutions for nonlinear singular m-point boundary value problem
نویسندگان
چکیده
منابع مشابه
TRIPLE SOLUTIONS FOR NONLINEAR SINGULAR m-POINT BOUNDARY VALUE PROBLEM
In this paper, we study the existence of three solutions to the following nonlinear m-point boundary value problem u′′(t) + βu(t) = h(t)f(t, u(t)), 0 < t < 1, u′(0) = 0, u(1) = m−2 ∑ i=1 αiu(ηi), where 0 < β < π2 , f ∈ C([0, 1] × R ,R). h(t) is allowed to be singular at t = 0 and t = 1. The arguments are based only upon the Leggett-Williams fixed point theorem. We also prove nonexist results.
متن کاملTriple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian
In this paper, we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian dynamic equation on time scales. We prove the existence at least three positive solutions of the boundary value problem by using the Avery and Peterson fixed point theorem. The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly. Our results ...
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملTriple Positive Solutions for Boundary Value Problem of a Nonlinear Fractional Differential Equation
متن کامل
Nontrivial Solutions for Singular Nonlinear Three-Point Boundary Value Problems
The singular nonlinear three-point boundary value problems { −(Lu)(t) = h(t)f (u(t)), 0 < t < 1, βu(0)− γ u′(0) = 0, u(1) = αu(η) are discussed under some conditions concerning the first eigenvalue corresponding to the relevant linear operator, where (Lu)(t) = (p(t)u′(t))′+q(t)u(t), 0 < η < 1, h(t) is allowed to be singular at both t = 0 and t = 1, and f need not be nonnegative. The associated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Sciences and Applications
سال: 2011
ISSN: 2008-1901
DOI: 10.22436/jnsa.004.04.04